30 useful pyton code from chatgpt

 tell me mostly used phyton code , problme names 10 scenarios problems and solution, to be executed in colab?

ChatGPT

Here are ten common Python scenarios with corresponding solutions that you can execute in Google Colab. Each scenario is accompanied by a brief description and code examples.

1. Data Analysis with Pandas

Problem: Analyzing a CSV file

Solution:

python
import pandas as pd # Load CSV file into a DataFrame df = pd.read_csv('https://people.sc.fsu.edu/~jburkardt/data/csv/airtravel.csv') # Display first few rows print(df.head()) # Summary statistics print(df.describe()) # Plotting the data import matplotlib.pyplot as plt df.plot(kind='line', x='Month', y='1958') plt.show()

2. Machine Learning with Scikit-Learn

Problem: Training a simple model

Solution:

python
from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score # Load dataset iris = load_iris() X = iris.data y = iris.target # Split data into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train a RandomForest model model = RandomForestClassifier() model.fit(X_train, y_train) # Predict and evaluate y_pred = model.predict(X_test) print(f'Accuracy: {accuracy_score(y_test, y_pred)}')

3. Data Visualization with Matplotlib

Problem: Plotting a bar chart

Solution:

python
import matplotlib.pyplot as plt # Data categories = ['A', 'B', 'C'] values = [3, 7, 5] # Plot plt.bar(categories, values) plt.xlabel('Category') plt.ylabel('Values') plt.title('Bar Chart Example') plt.show()

4. Image Processing with OpenCV

Problem: Reading and displaying an image

Solution:

python
import cv2 from google.colab.patches import cv2_imshow # Load an image image = cv2.imread('https://upload.wikimedia.org/wikipedia/commons/2/2f/Google_2015_logo.svg') # Display the image cv2_imshow(image) # Convert to grayscale gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) cv2_imshow(gray_image)

5. Natural Language Processing with NLTK

Problem: Tokenizing a text

Solution:

python
import nltk nltk.download('punkt') from nltk.tokenize import word_tokenize # Sample text text = "Hello world! This is a test." # Tokenize text tokens = word_tokenize(text) print(tokens)

6. Web Scraping with BeautifulSoup

Problem: Extracting data from a webpage

Solution:

python
import requests from bs4 import BeautifulSoup # URL to scrape url = 'https://example.com' # Make a request response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') # Extract data titles = soup.find_all('h1') for title in titles: print(title.get_text())

7. Interactive Widgets with ipywidgets

Problem: Creating interactive sliders

Solution:

python
import ipywidgets as widgets from IPython.display import display # Create a slider slider = widgets.IntSlider(value=5, min=0, max=10, step=1, description='Slider:') # Display the slider display(slider) # Link the slider value to a variable slider_value = widgets.Label() def update_label(change): slider_value.value = f'Slider value: {change["new"]}' slider.observe(update_label, names='value') display(slider_value)

8. Time Series Analysis with statsmodels

Problem: Plotting ACF and PACF

Solution:

python
import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm # Generate synthetic time series data np.random.seed(42) data = np.cumsum(np.random.randn(1000)) + 100 # Plot the data plt.plot(data) plt.title('Time Series Data') plt.show() # Plot ACF and PACF fig, axes = plt.subplots(1, 2, figsize=(15, 5)) sm.graphics.tsa.plot_acf(data, lags=40, ax=axes[0]) sm.graphics.tsa.plot_pacf(data, lags=40, ax=axes[1]) plt.show()

9. Deep Learning with TensorFlow

Problem: Training a simple neural network

Solution:

python
import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense # Load dataset mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 # Build a simple model model = Sequential([ Dense(128, activation='relu', input_shape=(784,)), Dense(10, activation='softmax') ]) # Compile the model model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # Train the model model.fit(x_train.reshape(-1, 784), y_train, epochs=5) # Evaluate the model loss, accuracy = model.evaluate(x_test.reshape(-1, 784), y_test) print(f'Accuracy: {accuracy}')

10. Financial Analysis with yfinance

Problem: Fetching and plotting stock data

Solution:

python
!pip install yfinance import yfinance as yf import matplotlib.pyplot as plt # Fetch stock data stock = yf.Ticker("AAPL") hist = stock.history(period="1y") # Plot the data hist['Close'].plot(title="AAPL Stock Price") plt.show()

These scenarios cover a broad range of common tasks in Python, from data analysis and machine learning to web scraping and deep learning. Each example can be run in Google Colab, providing a great environment for experimentation and learning.

do the same for next 20 useful pyton code in different catagories?
ChatGPT

Here are 20 additional useful Python code examples across various categories, suitable for execution in Google Colab.

11. Sentiment Analysis with TextBlob

Problem: Analyzing the sentiment of a text

Solution:

python
!pip install textblob from textblob import TextBlob # Sample text text = "I love this product! It's amazing." # Analyze sentiment blob = TextBlob(text) print(f'Sentiment: {blob.sentiment}')

12. Web Scraping with Scrapy

Problem: Scraping data from a website

Solution:

python
!pip install scrapy import scrapy from scrapy.crawler import CrawlerProcess class QuotesSpider(scrapy.Spider): name = "quotes" start_urls = ['http://quotes.toscrape.com/'] def parse(self, response): for quote in response.css('div.quote'): yield { 'text': quote.css('span.text::text').get(), 'author': quote.css('span small::text').get(), } process = CrawlerProcess() process.crawl(QuotesSpider) process.start()

13. Working with JSON

Problem: Parsing and creating JSON data

Solution:

python
import json # Sample JSON data data = '{"name": "John", "age": 30, "city": "New York"}' # Parse JSON parsed_data = json.loads(data) print(parsed_data) # Create JSON new_data = { "name": "Jane", "age": 25, "city": "Los Angeles" } json_data = json.dumps(new_data) print(json_data)

14. File I/O Operations

Problem: Reading from and writing to files

Solution:

python
# Writing to a file with open('example.txt', 'w') as file: file.write('Hello, World!') # Reading from a file with open('example.txt', 'r') as file: content = file.read() print(content)

15. Automation with Selenium

Problem: Automating web browser interactions

Solution:

python
!pip install selenium from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys # Set up the webdriver driver = webdriver.Chrome() # Open a website driver.get('https://www.google.com') # Find the search box and enter a query search_box = driver.find_element(By.NAME, 'q') search_box.send_keys('Python programming') search_box.send_keys(Keys.RETURN) # Close the browser driver.quit()

16. Data Cleaning with Pandas

Problem: Cleaning a messy dataset

Solution:

python
import pandas as pd # Sample data data = { 'Name': ['John', 'Anna', 'Peter', 'Linda', 'James'], 'Age': [28, 22, 35, None, 29], 'City': ['New York', 'Paris', 'Berlin', 'London', None] } # Create DataFrame df = pd.DataFrame(data) # Fill missing values df['Age'].fillna(df['Age'].mean(), inplace=True) df['City'].fillna('Unknown', inplace=True) # Display cleaned data print(df)

17. Regular Expressions

Problem: Extracting information using regex

Solution:

python
import re # Sample text text = "The rain in Spain falls mainly in the plain." # Find all words that start with 'S' matches = re.findall(r'\bS\w+', text) print(matches)

18. Multithreading

Problem: Running multiple threads

Solution:

python
import threading def print_numbers(): for i in range(1, 6): print(i) def print_letters(): for letter in ['A', 'B', 'C', 'D', 'E']: print(letter) # Create threads thread1 = threading.Thread(target=print_numbers) thread2 = threading.Thread(target=print_letters) # Start threads thread1.start() thread2.start() # Wait for threads to complete thread1.join() thread2.join()

19. HTTP Requests with Requests

Problem: Making an HTTP request

Solution:

python
import requests # Make a GET request response = requests.get('https://api.github.com') # Display response content print(response.json())

20. Image Classification with Keras

Problem: Building a simple image classifier

Solution:

python
import tensorflow as tf from tensorflow.keras.datasets import cifar10 from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D # Load dataset (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Normalize data x_train, x_test = x_train / 255.0, x_test / 255.0 # Build model model = Sequential([ Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)), MaxPooling2D((2, 2)), Flatten(), Dense(64, activation='relu'), Dense(10, activation='softmax') ]) # Compile model model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # Train model model.fit(x_train, y_train, epochs=5) # Evaluate model loss, accuracy = model.evaluate(x_test, y_test) print(f'Accuracy: {accuracy}')

21. Exploratory Data Analysis with Seaborn

Problem: Visualizing data distributions

Solution:

python
import seaborn as sns import matplotlib.pyplot as plt # Load dataset df = sns.load_dataset('iris') # Plot pairplot sns.pairplot(df, hue='species') plt.show()

22. Working with Dates and Times

Problem: Manipulating dates and times

Solution:

python
from datetime import datetime, timedelta # Current date and time now = datetime.now() print(f'Now: {now}') # Add 7 days to current date future_date = now + timedelta(days=7) print(f'Future date: {future_date}') # Format date as string formatted_date = now.strftime('%Y-%m-%d %H:%M:%S') print(f'Formatted date: {formatted_date}')

23. Using API with OAuth2

Problem: Making authenticated API requests

Solution:

python
!pip install requests-oauthlib from requests_oauthlib import OAuth2Session # OAuth2 credentials client_id = 'YOUR_CLIENT_ID' client_secret = 'YOUR_CLIENT_SECRET' token_url = 'https://provider.com/oauth2/token' # Fetch token oauth = OAuth2Session(client_id, client_secret) token = oauth.fetch_token(token_url=token_url, client_id=client_id, client_secret=client_secret) # Make authenticated request response = oauth.get('https://provider.com/api/resource') print(response.json())

24. Creating Dashboards with Dash

Problem: Building an interactive dashboard

Solution:

python
!pip install dash import dash import dash_core_components as dcc import dash_html_components as html # Initialize the app app = dash.Dash(__name__) # Define the layout app.layout = html.Div(children=[ html.H1(children='Hello Dash'), dcc.Graph( id='example-graph', figure={ 'data': [ {'x': [1, 2, 3], 'y': [4, 1, 2], 'type': 'bar', 'name': 'SF'}, {'x': [1, 2, 3], 'y': [2, 4, 5], 'type': 'bar', 'name': 'NYC'}, ], 'layout': { 'title': 'Dash Data Visualization' } } ) ]) # Run the app if __name__ == '__main__': app.run_server(debug=True)

25. Data Pipelines with Airflow

Problem: Creating a simple data pipeline

Solution:

python
!pip install apache-airflow from airflow import DAG from airflow.operators.bash_operator import BashOperator from datetime import datetime # Define the DAG dag = DAG('simple_dag', description='A simple DAG', schedule_interval='0 12 * * *', start_date=datetime(2021, 1, 1), catchup=False) # Define the tasks task1 = BashOperator(task_id='print_date', bash_command='date', dag=dag) task2 = BashOperator(task_id='sleep', bash_command='sleep 5', dag=dag) # Set task dependencies task1 >> task2

26. Text-to-Speech Conversion

Problem: Converting text to speech

Solution:

python
!pip install gtts from gtts import gTTS # Sample text text = "Hello, how are you?" # Convert text to speech tts = gTTS(text) tts.save('hello.mp3') # Play the audio import IPython.display as ipd ipd.Audio('hello.mp3')
---------

27. Speech Recognition

Problem: Converting speech to text

Solution:

python
!pip install SpeechRecognition import speech_recognition as sr # Initialize recognizer recognizer = sr.Recognizer() # Load audio file audio_file = 'path_to_audio.wav' # Recognize speech from audio file with sr.AudioFile(audio_file) as source: audio = recognizer.record(source) # Convert speech to text text = recognizer.recognize_google(audio) print(f'Recognized Text: {text}')

28. Image Processing with OpenCV

Problem: Applying filters to an image

Solution:

python
!pip install opencv-python import cv2 from google.colab.patches import cv2_imshow # Load an image image = cv2.imread('path_to_image.jpg') # Convert image to grayscale gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Apply Gaussian blur blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0) # Display the image cv2_imshow(blurred_image)

29. Time Series Analysis with Statsmodels

Problem: Analyzing time series data

Solution:

python
!pip install statsmodels import pandas as pd import statsmodels.api as sm # Load time series data data = sm.datasets.co2.load_pandas().data data = data.dropna() # Fit ARIMA model model = sm.tsa.ARIMA(data, order=(1, 1, 1)) results = model.fit() # Print summary print(results.summary())

30. Financial Analysis with yfinance

Problem: Fetching stock data

Solution:

python
!pip install yfinance import yfinance as yf # Fetch stock data ticker = yf.Ticker('AAPL') stock_data = ticker.history(period='1mo') # Display stock data print(stock_data)

31. Real-time Data Plotting with Bokeh

Problem: Creating interactive plots

Solution:

python
!pip install bokeh from bokeh.plotting import figure, show, output_notebook output_notebook() # Create a plot p = figure(title="Simple Line Plot", x_axis_label='X', y_axis_label='Y') # Add a line renderer p.line([1, 2, 3, 4, 5], [6, 7, 2, 4, 5], legend_label="Temp.", line_width=2) # Show the plot show(p)

32. NLP with SpaCy

Problem: Named entity recognition

Solution:

python
!pip install spacy !python -m spacy download en_core_web_sm import spacy # Load SpaCy model nlp = spacy.load('en_core_web_sm') # Sample text text = "Apple is looking at buying U.K. startup for $1 billion" # Process text doc = nlp(text) # Print named entities for ent in doc.ents: print(ent.text, ent.label_)

33. Data Transformation with PySpark

Problem: Transforming large datasets

Solution:

python
!pip install pyspark from pyspark.sql import SparkSession # Initialize Spark session spark = SparkSession.builder.appName('example').getOrCreate() # Create DataFrame data = [("James", "Smith", "USA", "CA"), ("Michael", "Rose", "USA", "NY"), ("Robert", "Williams", "USA", "CA")] columns = ["firstname", "lastname", "country", "state"] df = spark.createDataFrame(data, columns) # Perform transformation df_filtered = df.filter(df.state == "CA") # Show results df_filtered.show()

34. Building a REST API with Flask

Problem: Creating a simple REST API

Solution:

python
!pip install Flask from flask import Flask, jsonify app = Flask(__name__) @app.route('/') def home(): return jsonify(message="Hello, World!") if __name__ == '__main__': app.run(debug=True)

35. Creating Graphs with NetworkX

Problem: Visualizing a network graph

Solution:

python
!pip install networkx import networkx as nx import matplotlib.pyplot as plt # Create a graph G = nx.Graph() # Add nodes and edges G.add_edge('A', 'B') G.add_edge('B', 'C') G.add_edge('C', 'A') # Draw the graph nx.draw(G, with_labels=True) plt.show()

36. Geospatial Analysis with Geopandas

Problem: Plotting geospatial data

Solution:

python
!pip install geopandas import geopandas as gpd # Load geospatial data world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres')) # Plot the data world.plot() plt.show()

37. Machine Learning with scikit-learn

Problem: Training a classification model

Solution:

python
from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score # Load dataset iris = load_iris() X = iris.data y = iris.target # Split data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # Train model model = RandomForestClassifier() model.fit(X_train, y_train) # Make predictions predictions = model.predict(X_test) # Evaluate model accuracy = accuracy_score(y_test, predictions) print(f'Accuracy: {accuracy}')

38. Web Scraping with Beautiful Soup

Problem: Extracting data from HTML

Solution:

python
!pip install beautifulsoup4 from bs4 import BeautifulSoup import requests # Fetch web page response = requests.get('http://example.com') soup = BeautifulSoup(response.content, 'html.parser') # Extract title title = soup.title.string print(f'Title: {title}')

39. Object Detection with TensorFlow

Problem: Detecting objects in images

Solution:

python
import tensorflow as tf # Load pre-trained model model = tf.keras.applications.MobileNetV2(weights='imagenet') # Load and preprocess image image = tf.keras.preprocessing.image.load_img('path_to_image.jpg', target_size=(224, 224)) input_array = tf.keras.preprocessing.image.img_to_array(image) input_array = tf.expand_dims(input_array, axis=0) input_array = tf.keras.applications.mobilenet_v2.preprocess_input(input_array) # Make predictions predictions = model.predict(input_array) decoded_predictions = tf.keras.applications.mobilenet_v2.decode_predictions(predictions) print(decoded_predictions)

40. Sentiment Analysis with VADER

Problem: Analyzing sentiment of a text

Solution:

python
!pip install vaderSentiment from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer # Initialize analyzer analyzer = SentimentIntensityAnalyzer() # Sample text text = "I love this product! It's amazing." # Analyze sentiment sentiment = analyzer.polarity_scores(text) print(f'Sentiment: {sentiment}')

41. Data Aggregation with Dask

Problem: Handling large datasets

Solution:

python
!pip install dask import dask.dataframe as dd # Load dataset df = dd.read_csv('path_to_large_dataset.csv') # Perform aggregation result = df.groupby('column_name').sum().compute() print(result)

42. Email Sending with smtplib

Problem: Sending an email

Solution:

python
import smtplib from email.mime.text import MIMEText # Define email content msg = MIMEText('This is a test email') msg['Subject'] = 'Test Email' msg['From'] = 'your_email@example.com' msg['To'] = 'recipient_email@example.com' # Send email with smtplib.SMTP('smtp.example.com') as server: server.login('your_username', 'your_password') server.sendmail(msg['From'], [msg['To']], msg.as_string())

43. Data Visualization with Plotly

Problem: Creating interactive plots

Solution:

python
!pip install plotly import plotly.express as px import pandas as pd # Load dataset df = pd.DataFrame({ 'x': [1, 2, 3, 4, 5], 'y': [10, 11, 12, 13, 14], 'z': [100, 101, 102, 103, 104] }) # Create 3D scatter plot fig = px.scatter_3d(df, x='x', y='y', z='z') fig.show()

44. Working with SQLite

Problem: Using SQLite database

Solution:

python
import sqlite3 # Connect to database conn = sqlite3.connect('example.db') # Create a cursor cursor = conn.cursor() # Create table cursor.execute('''CREATE TABLE IF NOT EXISTS users (id INTEGER PRIMARY KEY

Popular posts from this blog

pss book : శ్రీకృష్ణుడు దేవుడా, భగవంతుడా completed , second review needed. 26th April 2024

pss book: గురు ప్రార్థనామంజరి . completed 21st july 2024

pss book: కధల జ్ఞానము read review pending. 25th june 2024