offline , subtiles for any system backgroun sound

import speech_recognition as sr
from pydub import AudioSegment
import os
import time

# File path for input audio (upload your WAV file to /content/)
input_audio_path = "/content/meeting_audio.wav"

# Initialize recognizer
recognizer = sr.Recognizer()

# Function to process audio in chunks and generate subtitles
def generate_subtitles(audio_file):
    # Load audio file
    audio = AudioSegment.from_wav(audio_file)
    chunk_length_ms = 5000  # Process 5-second chunks
    total_duration_ms = len(audio)
    
    print("Starting subtitle generation (press Ctrl+C to stop)...")
    
    try:
        for start_ms in range(0, total_duration_ms, chunk_length_ms):
            end_ms = min(start_ms + chunk_length_ms, total_duration_ms)
            # Extract chunk
            chunk = audio[start_ms:end_ms]
            # Export chunk to temporary WAV
            temp_wav = "/content/temp_chunk.wav"
            chunk.export(temp_wav, format="wav")
            
            # Convert chunk to audio data for speech recognition
            with sr.AudioFile(temp_wav) as source:
                audio_data = recognizer.record(source)
                try:
                    # Recognize speech (English only)
                    text = recognizer.recognize_google(audio_data, language="en-US")
                    timestamp = f"{start_ms//1000//60:02d}:{start_ms//1000%60:02d}"
                    print(f"[{timestamp}] {text}")
                except sr.UnknownValueError:
                    print(f"[{timestamp}] (Unintelligible)")
                except sr.RequestError as e:
                    print(f"[{timestamp}] Error: {e}")
            
            # Clean up temporary file
            if os.path.exists(temp_wav):
                os.remove(temp_wav)
            
            # Small delay to simulate real-time processing
            time.sleep(1)
            
    except KeyboardInterrupt:
        print("Subtitle generation stopped.")

# Check if input audio exists
if not os.path.exists(input_audio_path):
    print(f"Error: Audio file {input_audio_path} not found. Please upload it.")
else:
    generate_subtitles(input_audio_path)

-------------
To achieve real-time English subtitle generation from system audio (e.g., capturing voices from a team meeting in Google Colab), we need to:
- Capture system audio in real-time.
- Perform speech-to-text conversion to generate English subtitles.
- Display the subtitles in the Colab console until the program is stopped.

However, Google Colab runs in a cloud environment and **cannot directly access the host system's microphone or audio output**. To work around this, we can:
- Use a pre-recorded audio file (e.g., uploaded to `/content/`) to simulate real-time audio processing.
- Process the audio in chunks to mimic real-time transcription.
- Use a speech-to-text model to generate English subtitles and print them to the console.

For this solution, we'll:
- Use `pydub` to read and process an audio file in chunks (simulating real-time input).
- Use the `speech_recognition` library with Google's Speech Recognition API for speech-to-text (English only).
- Print subtitles to the Colab console as they are generated.
- Allow the program to run until manually stopped (e.g., via Ctrl+C).

Since Colab doesn't support direct system audio capture, you'll need to upload a WAV file (e.g., `/content/meeting_audio.wav`) containing the meeting audio. If you have a way to record system audio locally (e.g., using Audacity or a system audio recorder) and upload it, this code will process it. For real-time system audio capture, you’d need a local Python environment with microphone access, which I can adapt if needed.

### Python Code for Google Colab
```python
import speech_recognition as sr
from pydub import AudioSegment
import os
import time

# File path for input audio (upload your WAV file to /content/)
input_audio_path = "/content/meeting_audio.wav"

# Initialize recognizer
recognizer = sr.Recognizer()

# Function to process audio in chunks and generate subtitles
def generate_subtitles(audio_file):
    # Load audio file
    audio = AudioSegment.from_wav(audio_file)
    chunk_length_ms = 5000  # Process 5-second chunks
    total_duration_ms = len(audio)
    
    print("Starting subtitle generation (press Ctrl+C to stop)...")
    
    try:
        for start_ms in range(0, total_duration_ms, chunk_length_ms):
            end_ms = min(start_ms + chunk_length_ms, total_duration_ms)
            # Extract chunk
            chunk = audio[start_ms:end_ms]
            # Export chunk to temporary WAV
            temp_wav = "/content/temp_chunk.wav"
            chunk.export(temp_wav, format="wav")
            
            # Convert chunk to audio data for speech recognition
            with sr.AudioFile(temp_wav) as source:
                audio_data = recognizer.record(source)
                try:
                    # Recognize speech (English only)
                    text = recognizer.recognize_google(audio_data, language="en-US")
                    timestamp = f"{start_ms//1000//60:02d}:{start_ms//1000%60:02d}"
                    print(f"[{timestamp}] {text}")
                except sr.UnknownValueError:
                    print(f"[{timestamp}] (Unintelligible)")
                except sr.RequestError as e:
                    print(f"[{timestamp}] Error: {e}")
            
            # Clean up temporary file
            if os.path.exists(temp_wav):
                os.remove(temp_wav)
            
            # Small delay to simulate real-time processing
            time.sleep(1)
            
    except KeyboardInterrupt:
        print("Subtitle generation stopped.")

# Check if input audio exists
if not os.path.exists(input_audio_path):
    print(f"Error: Audio file {input_audio_path} not found. Please upload it.")
else:
    generate_subtitles(input_audio_path)
```

### Installation Commands
Run these in a Colab cell before executing the code:
```bash
!pip install SpeechRecognition pydub
!apt-get install ffmpeg
```

### Instructions to Run in Google Colab
1. **Record and Upload Audio**:
   - Record your team meeting audio using a tool like Audacity, Zoom’s audio recording feature, or a system audio recorder (e.g., set your system to capture output audio).
   - Save the recording as a WAV file (e.g., `meeting_audio.wav`).
   - Upload the WAV file to `/content/meeting_audio.wav` in Colab (drag and drop or use the file explorer).
2. **Install Dependencies**:
   - Run the installation commands above to install `SpeechRecognition`, `pydub`, and `ffmpeg`.
3. **Run the Code**:
   - Copy the code from the `<xaiArtifact>` block into a Colab cell.
   - Execute the cell. It will:
     - Process the audio file in 5-second chunks.
     - Generate English subtitles using Google’s Speech Recognition API.
     - Print subtitles to the console with timestamps (e.g., `[00:05] Hello, welcome to the meeting`).
     - Continue until the audio ends or you stop it with Ctrl+C.
4. **Stop the Program**:
   - Press Ctrl+C in the Colab cell to stop processing if needed.

### Notes
- **Audio Format**: The code expects a WAV file. If your audio is in MP3 or another format, convert it to WAV locally (e.g., using Audacity) before uploading, or I can modify the code to handle MP3 if requested.
- **Real-Time Limitation**: Colab cannot capture live system audio. This code processes a pre-recorded file in chunks to simulate real-time transcription. For true real-time system audio capture, you’d need a local Python setup with `pyaudio` or similar.
- **Subtitle Quality**: Google’s Speech Recognition API is used for simplicity but may struggle with noisy audio or accents. For better accuracy, we could use a model like `whisper` from OpenAI (let me know if you want to switch).
- **File Path**: Ensure the audio file is at `/content/meeting_audio.wav`. Update `input_audio_path` if you use a different name.

If you need modifications (e.g., MP3 support, a different speech-to-text model, or a local setup for live audio), let me know!


-----------------------
can we do it , using java program , running java code, it starts listen system voice, generates subtiles of english conversation?

---------------------

 To achieve real-time English subtitle generation from system audio (e.g., capturing voices from a team meeting) using a Java program, we need to:

- Capture system audio in real-time using Java’s audio APIs.

- Perform speech-to-text conversion to generate English subtitles.

- Display the subtitles in the console until the program is stopped.


Unlike the previous Python solution for Google Colab, which processed a pre-recorded WAV file due to Colab’s limitations, a Java program running locally can directly capture system audio (e.g., from a microphone or system output) using the `javax.sound.sampled` package. For speech-to-text, we’ll use a cloud-based API, such as Google Cloud Speech-to-Text, as Java doesn’t have a built-in speech recognition library. The program will:

- Capture audio from the system’s microphone (or loopback audio if configured).

- Send audio chunks to Google Cloud Speech-to-Text for real-time transcription.

- Print English subtitles to the console with timestamps.


### Prerequisites

- **Google Cloud Account**: Set up a Google Cloud project, enable the Speech-to-Text API, and download a service account JSON key.

- **Java Libraries**:

  - Google Cloud Speech-to-Text client library (`google-cloud-speech`).

  - Java Sound API (included in JDK).

- **System Audio**: For microphone input, ensure a microphone is connected. For system audio (e.g., meeting audio), you may need a virtual audio cable (e.g., VB-Audio Cable) to route system output to the input.


### Java Code

Below is a Java program that captures system audio, sends it to Google Cloud Speech-to-Text for real-time transcription, and prints English subtitles to the console. The program runs until manually stopped (e.g., via Ctrl+C).


```x-java

import com.google.cloud.speech.v1.*;

import com.google.protobuf.ByteString;

import javax.sound.sampled.*;

import java.io.*;

import java.time.LocalTime;

import java.time.format.DateTimeFormatter;

import java.util.concurrent.BlockingQueue;

import java.util.concurrent.LinkedBlockingQueue;


public class SpeechToSubtitles {

    private static final int SAMPLE_RATE = 16000; // Hz, required by Google Speech-to-Text

    private static final int CHUNK_SIZE = 3200;   // Bytes (100ms at 16kHz, 16-bit, mono)

    private static final BlockingQueue<byte[]> audioQueue = new LinkedBlockingQueue<>();

    private static volatile boolean isRunning = true;


    public static void main(String[] args) throws Exception {

        // Set Google Cloud credentials (update path to your service account JSON)

        System.setProperty("GOOGLE_APPLICATION_CREDENTIALS", "/path/to/your/service-account-key.json");


        // Start audio capture thread

        Thread captureThread = new Thread(SpeechToSubtitles::captureAudio);

        captureThread.start();


        // Start speech recognition

        recognizeSpeech();


        // Stop capture on program termination

        isRunning = false;

        captureThread.interrupt();

    }


    private static void captureAudio() {

        try {

            AudioFormat format = new AudioFormat(SAMPLE_RATE, 16, 1, true, false);

            DataLine.Info info = new DataLine.Info(TargetDataLine.class, format);

            TargetDataLine line = (TargetDataLine) AudioSystem.getLine(info);

            line.open(format);

            line.start();


            byte[] buffer = new byte[CHUNK_SIZE];

            while (isRunning) {

                int bytesRead = line.read(buffer, 0, buffer.length);

                if (bytesRead > 0) {

                    byte[] data = new byte[bytesRead];

                    System.arraycopy(buffer, 0, data, 0, bytesRead);

                    audioQueue.offer(data);

                }

            }

            line.stop();

            line.close();

        } catch (LineUnavailableException e) {

            System.err.println("Error capturing audio: " + e.getMessage());

        }

    }


    private static void recognizeSpeech() {

        try (SpeechClient speechClient = SpeechClient.create()) {

            RecognitionConfig config = RecognitionConfig.newBuilder()

                    .setEncoding(RecognitionConfig.AudioEncoding.LINEAR16)

                    .setSampleRateHertz(SAMPLE_RATE)

                    .setLanguageCode("en-US")

                    .build();


            StreamingRecognitionConfig streamingConfig = StreamingRecognitionConfig.newBuilder()

                    .setConfig(config)

                    .setInterimResults(true)

                    .build();


            // Stream audio to Google Speech-to-Text

            SpeechClient.StreamingRecognizeCall call = speechClient.streamingRecognizeCallable().splitCall();

            call.request(StreamingRecognizeRequest.newBuilder().setStreamingConfig(streamingConfig).build());


            DateTimeFormatter timeFormatter = DateTimeFormatter.ofPattern("mm:ss");

            while (isRunning) {

                byte[] audioChunk = audioQueue.poll();

                if (audioChunk != null) {

                    ByteString audioBytes = ByteString.copyFrom(audioChunk);

                    StreamingRecognizeRequest request = StreamingRecognizeRequest.newBuilder()

                            .setAudioContent(audioBytes)

                            .build();

                    StreamingRecognizeResponse response = call.request(request).get();


                    for (StreamingRecognitionResult result : response.getResultsList()) {

                        for (SpeechRecognitionAlternative alternative : result.getAlternativesList()) {

                            String transcript = alternative.getTranscript();

                            if (!transcript.isEmpty()) {

                                String timestamp = LocalTime.now().format(timeFormatter);

                                System.out.println("[" + timestamp + "] " + transcript);

                            }

                        }

                    }

                }

                Thread.sleep(100); // Prevent tight loop

            }

        } catch (Exception e) {

            System.err.println("Error in speech recognition: " + e.getMessage());

        }

    }

}

```


### Installation Commands

Run these in your local terminal to set up dependencies:

```bash

# Install Google Cloud Speech-to-Text library via Maven

# Add to your pom.xml if using Maven

cat <<EOL >> pom.xml

<project>

  <dependencies>

    <dependency>

      <groupId>com.google.cloud</groupId>

      <artifactId>google-cloud-speech</artifactId>

      <version>2.9.0</version>

    </dependency>

  </dependencies>

</project>

EOL


# Install Maven (if not already installed)

sudo apt-get update

sudo apt-get install maven


# Download dependencies

mvn dependency:resolve

```


### Instructions to Run Locally

1. **Set Up Google Cloud**:

   - Create a Google Cloud project and enable the Speech-to-Text API.

   - Download your service account JSON key and place it at `/path/to/your/service-account-key.json`.

   - Update the `GOOGLE_APPLICATION_CREDENTIALS` path in the code to point to your JSON file.

2. **Prepare Environment**:

   - Ensure Java JDK 8 or higher is installed (`java -version` to check).

   - Install Maven for dependency management (`sudo apt-get install maven` on Linux or equivalent).

   - Add the Google Cloud Speech dependency to your project (via `pom.xml` as shown above).

3. **Configure Audio Input**:

   - For microphone input, ensure a microphone is connected and set as the default input device.

   - For system audio (e.g., meeting audio), install a virtual audio cable (e.g., VB-Audio Cable) and route system output to the input. Set the virtual cable as the default input in your system settings.

4. **Compile and Run**:

   - Save the code as `SpeechToSubtitles.java`.

   - Compile and run using Maven:

     ```bash

     mvn compile

     mvn exec:java -Dexec.mainClass="SpeechToSubtitles"

     ```

   - Alternatively, compile and run manually:

     ```bash

     javac -cp .:google-cloud-speech-2.9.0.jar SpeechToSubtitles.java

     java -cp .:google-cloud-speech-2.9.0.jar SpeechToSubtitles

     ```

5. **View Subtitles**:

   - The program starts capturing audio and prints subtitles to the console (e.g., `[00:05] Hello, welcome to the meeting`).

   - Stop the program with Ctrl+C.

6. **Stop the Program**:

   - Press Ctrl+C in the terminal to stop audio capture and transcription.


### Notes

- **Audio Input**: The code uses the default microphone. For system audio, configure a virtual audio cable. Modify the `TargetDataLine` setup if you need a specific audio device (I can provide code for device selection if needed).

- **Speech-to-Text**: Uses Google Cloud Speech-to-Text for accurate transcription. Ensure your Google Cloud account has sufficient quota and billing enabled (free tier may have limits).

- **Dependencies**: The `google-cloud-speech` library requires the JAR file or Maven setup. Download the JAR manually if not using Maven (`mvn dependency:resolve`).

- **Running in Colab**: Java in Colab is limited and cannot access local system audio. This code is designed for a local environment. If you need a Colab-based solution, we’d revert to processing uploaded audio files (as in the Python solution).

- **Performance**: The program processes audio in 100ms chunks for near-real-time transcription. Latency depends on network speed and Google’s API response time.


If you need modifications (e.g., specific audio device selection, alternative speech-to-text APIs, or running in a different environment), let me know!


--------------

import com.google.cloud.speech.v1.*;

import com.google.protobuf.ByteString;

import javax.sound.sampled.*;

import java.io.*;

import java.time.LocalTime;

import java.time.format.DateTimeFormatter;

import java.util.concurrent.BlockingQueue;

import java.util.concurrent.LinkedBlockingQueue;


public class SpeechToSubtitles {

    private static final int SAMPLE_RATE = 16000; // Hz, required by Google Speech-to-Text

    private static final int CHUNK_SIZE = 3200;   // Bytes (100ms at 16kHz, 16-bit, mono)

    private static final BlockingQueue<byte[]> audioQueue = new LinkedBlockingQueue<>();

    private static volatile boolean isRunning = true;


    public static void main(String[] args) throws Exception {

        // Set Google Cloud credentials (update path to your service account JSON)

        System.setProperty("GOOGLE_APPLICATION_CREDENTIALS", "/path/to/your/service-account-key.json");


        // Start audio capture thread

        Thread captureThread = new Thread(SpeechToSubtitles::captureAudio);

        captureThread.start();


        // Start speech recognition

        recognizeSpeech();


        // Stop capture on program termination

        isRunning = false;

        captureThread.interrupt();

    }


    private static void captureAudio() {

        try {

            AudioFormat format = new AudioFormat(SAMPLE_RATE, 16, 1, true, false);

            DataLine.Info info = new DataLine.Info(TargetDataLine.class, format);

            TargetDataLine line = (TargetDataLine) AudioSystem.getLine(info);

            line.open(format);

            line.start();


            byte[] buffer = new byte[CHUNK_SIZE];

            while (isRunning) {

                int bytesRead = line.read(buffer, 0, buffer.length);

                if (bytesRead > 0) {

                    byte[] data = new byte[bytesRead];

                    System.arraycopy(buffer, 0, data, 0, bytesRead);

                    audioQueue.offer(data);

                }

            }

            line.stop();

            line.close();

        } catch (LineUnavailableException e) {

            System.err.println("Error capturing audio: " + e.getMessage());

        }

    }


    private static void recognizeSpeech() {

        try (SpeechClient speechClient = SpeechClient.create()) {

            RecognitionConfig config = RecognitionConfig.newBuilder()

                    .setEncoding(RecognitionConfig.AudioEncoding.LINEAR16)

                    .setSampleRateHertz(SAMPLE_RATE)

                    .setLanguageCode("en-US")

                    .build();


            StreamingRecognitionConfig streamingConfig = StreamingRecognitionConfig.newBuilder()

                    .setConfig(config)

                    .setInterimResults(true)

                    .build();


            // Stream audio to Google Speech-to-Text

            SpeechClient.StreamingRecognizeCall call = speechClient.streamingRecognizeCallable().splitCall();

            call.request(StreamingRecognizeRequest.newBuilder().setStreamingConfig(streamingConfig).build());


            DateTimeFormatter timeFormatter = DateTimeFormatter.ofPattern("mm:ss");

            while (isRunning) {

                byte[] audioChunk = audioQueue.poll();

                if (audioChunk != null) {

                    ByteString audioBytes = ByteString.copyFrom(audioChunk);

                    StreamingRecognizeRequest request = StreamingRecognizeRequest.newBuilder()

                            .setAudioContent(audioBytes)

                            .build();

                    StreamingRecognizeResponse response = call.request(request).get();


                    for (StreamingRecognitionResult result : response.getResultsList()) {

                        for (SpeechRecognitionAlternative alternative : result.getAlternativesList()) {

                            String transcript = alternative.getTranscript();

                            if (!transcript.isEmpty()) {

                                String timestamp = LocalTime.now().format(timeFormatter);

                                System.out.println("[" + timestamp + "] " + transcript);

                            }

                        }

                    }

                }

                Thread.sleep(100); // Prevent tight loop

            }

        } catch (Exception e) {

            System.err.println("Error in speech recognition: " + e.getMessage());

        }

    }

}

Popular posts from this blog

SAP CPI : camle expression in sap cpi , cm, router, filter and groovy script. format

pss book: గురు ప్రార్థనామంజరి . completed 21st july 2024

pss book : శ్రీకృష్ణుడు దేవుడా, భగవంతుడా completed , second review needed. 26th April 2024